	αι	particles			
	βι	particles			
	γr	ays			
	X-	rays			
		<u> </u>			
)	(i)	Complete the tab	le showing th	ne typical maximum rar	nge in air for α and β
		Type of ra	adiation	Typical range in	air / m
		α			
		β			
	(ii)	γ rays have a ran	ne of at least	1 km in air	
	()	However, a γ ray	detector plac	ced 0.5 m from a γ ray as it is moved a few cer	
		Explain this obse	rvation.		

		Explain the most hazardous aspect of the presence of this dust to an unprotected human entering the room.
		(2 (Total 6 marks
Q2.		(a) In a radioactivity experiment, background radiation is taken into account when taking corrected count rate readings in a laboratory. One source of background radiation is the rocks on which the laboratory is built. Give two other sources of background radiation.
		source 1
		source 2(1
	(b)	A γ ray detector with a cross-sectional area of 1.5 × 10 ⁻³ m ² when facing the source is placed 0.18 m from the source. A corrected count rate of 0.62 counts s ⁻¹ is recorded.
		 (i) Assume the source emits γ rays uniformly in all directions. Show that the ratio
		number of γ photons incident on detector number of γ photons produced by source
		is about 4×10^{-3} .

(2)

	(ii)	The γ ray detector detects 1 in 400 of the γ photons incident on the facing surface of the detector. Calculate the activity of the source. State an appropriate unit.	
		Calculate the activity of the source. State an appropriate unit.	
		answer =unit(3)
(c)		culate the corrected count rate when the detector is moved 0.10 m further from source.	
		answer =counts s ⁻¹ (Total 9 marks	3) s)
Q3.	(a) by a	$^{212}_{83}$ Bi can decay into $^{208}_{82}$ Pb by a β^- followed by an α decay, or by an α followed β^- decay. One or more of the following elements is involved in these decays:	
Hg	T1. 04 P	O. os At.	

Write out decay equations showing each stage in both of these decays.

(b)	(i)	Describe how you would perform an experiment that demonstrates that gamma radiation obeys an inverse square law.
	(ii)	Explain why gamma radiation obeys an inverse square law but alpha and beta radiation do not.

(6)

Second decay path

First decay path

			•
			(9) (Total 15 marks)
04		(a) Calculate the radius of the ²³⁸ / ₉₂ U nucleus.	
Q4.			
		$r_0 = 1.3 \times 10^{-15} \text{ m}$	
			(2)
	(b)	At a distance of 30 mm from a point source of $^{\gamma}$ rays the corrected count Calculate the distance from the source at which the corrected count rate is assuming that there is no absorption.	
			(2)
	(c)	The activity of a source of β particles falls to 85% of its initial value in 52 s Calculate the decay constant of the source.	

		(3)
(d)	Explain why the isotope of technetium, $^{99}\text{Tc}_{m}$, is often chosen as a suitable source of radiation for use in medical diagnosis.	
	You may be awarded additional marks to those shown in brackets for the quality of written communication in your answer.	
	(Total 10 ma	(3) rks)