| | αι | particles | | | | |---|------|-------------------|----------------|--|-------------------------------------| | | βι | particles | | | | | | γr | ays | | | | | | X- | rays | | | | | | | <u> </u> | | | | | | | | | | | |) | (i) | Complete the tab | le showing th | ne typical maximum rar | nge in air for α and β | | | | Type of ra | adiation | Typical range in | air / m | | | | α | | | | | | | β | (ii) | γ rays have a ran | ne of at least | 1 km in air | | | | () | However, a γ ray | detector plac | ced 0.5 m from a γ ray
as it is moved a few cer | | | | | Explain this obse | rvation. | Explain the most hazardous aspect of the presence of this dust to an unprotected human entering the room. | |-----|-----|---| | | | | | | | | | | | (2
(Total 6 marks | | | | | | Q2. | | (a) In a radioactivity experiment, background radiation is taken into account when taking corrected count rate readings in a laboratory. One source of background radiation is the rocks on which the laboratory is built. Give two other sources of background radiation. | | | | source 1 | | | | source 2(1 | | | (b) | A γ ray detector with a cross-sectional area of 1.5 × 10 ⁻³ m ² when facing the source is placed 0.18 m from the source.
A corrected count rate of 0.62 counts s ⁻¹ is recorded. | | | | (i) Assume the source emits γ rays uniformly in all directions. Show that the ratio | | | | number of γ photons incident on detector number of γ photons produced by source | | | | is about 4×10^{-3} . | | | | | (2) | | (ii) | The γ ray detector detects 1 in 400 of the γ photons incident on the facing surface of the detector. Calculate the activity of the source. State an appropriate unit. | | |-----|-------------|---|----------| | | | Calculate the activity of the source. State an appropriate unit. | | | | | answer =unit(| 3) | | (c) | | culate the corrected count rate when the detector is moved 0.10 m further from source. | | | | | | | | | | | | | | | answer =counts s ⁻¹
(Total 9 marks | 3)
s) | | | | | | | Q3. | (a)
by a | $^{212}_{83}$ Bi can decay into $^{208}_{82}$ Pb by a β^- followed by an α decay, or by an α followed β^- decay. One or more of the following elements is involved in these decays: | | | Hg | T1. 04 P | O. os At. | | Write out decay equations showing each stage in both of these decays. | (b) | (i) | Describe how you would perform an experiment that demonstrates that gamma radiation obeys an inverse square law. | |-----|------|--| (ii) | Explain why gamma radiation obeys an inverse square law but alpha and beta radiation do not. | | | | | (6) Second decay path First decay path | | | | • | |-----|-----|--|-------------------------| | | | | | | | | | | | | | | (9)
(Total 15 marks) | | | | | | | | | | | | | | | | | 04 | | (a) Calculate the radius of the ²³⁸ / ₉₂ U nucleus. | | | Q4. | | | | | | | $r_0 = 1.3 \times 10^{-15} \text{ m}$ | (2) | | | | | | | | (b) | At a distance of 30 mm from a point source of $^{\gamma}$ rays the corrected count Calculate the distance from the source at which the corrected count rate is assuming that there is no absorption. | (2) | | | | | | | | (c) | The activity of a source of β particles falls to 85% of its initial value in 52 s Calculate the decay constant of the source. | | | | | | | | | | (3) | |-----|---|-------------| | | | | | (d) | Explain why the isotope of technetium, $^{99}\text{Tc}_{m}$, is often chosen as a suitable source of radiation for use in medical diagnosis. | | | | You may be awarded additional marks to those shown in brackets for the quality of written communication in your answer. | (Total 10 ma | (3)
rks) |